On the Fourier-Transformed Boltzmann Equation with Brownian Motion

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions for Fokker-Plank equation of geometric Brownian motion with Lie point symmetries

‎In this paper Lie symmetry analysis is applied to find new‎ solution for Fokker Plank equation of geometric Brownian motion‎. This analysis classifies the solution format of the Fokker Plank‎ ‎equation‎.

متن کامل

The Fractional Langevin Equation: Brownian Motion Revisited

It is well known that the concept of diffusion is associated with random motion of particles in space, usually denoted as Brownian motion, see e.g. [1-3]. Diffusion is considered normal when the mean squared displacement of the particle during a time interval becomes, for sufficiently long intervals, a linear function of it. When this linearity breaks down, degenerating in a power law with expo...

متن کامل

Fourier spectra of measures associated with algorithmically random Brownian motion

Abstract. In this paper we study the behaviour at infinity of the Fourier transform of Radon measures supported by the images of fractal sets under an algorithmically random Brownian motion. We show that, under some computability conditions on these sets, the Fourier transform of the associated measures have, relative to the Hausdorff dimensions of these sets, optimal asymptotic decay at infini...

متن کامل

Hyperbolic Approximation of the Fourier Transformed Vlasov Equation

We construct an hyperbolic approximation of the Vlasov equation in which the dependency on the velocity variable is removed. The model is constructed from the Vlasov equation after a Fourier transformation in the velocity variable [9]. A well-chosen nite element semi-discretization in the spectral variable leads to an hyperbolic system.The resulting model enjoys interesting conservation and sta...

متن کامل

On Delayed Logistic Equation Driven by Fractional Brownian Motion

In this paper we use the fractional stochastic integral given by Carmona et al. [1] to study a delayed logistic equation driven by fractional Brownian motion which is a generalization of the classical delayed logistic equation . We introduce an approximate method to find the explicit expression for the solution. Our proposed method can also be applied to the other models and to illustrate this,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2015

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2015/318618